击冷却进行重点强化的思路是正确的”
看着眼前的图片,布莱德显然心情很不错。
数值分析结果不准确,难道是什么大问题吗
本来就是一个参考作用好吧。
总不会真有人能算到跟实际情况基本接近吧
不会吧
布莱德的嘴角扯出一个喜悦的弧度。
这意味着他的课题组不仅在压气机设计,甚至在涡轮设计上也已经走到了世界的最前列。
甚至反超了这台t1型测试平台的牛津大学。
“把实验数据处理一下,设备处理好,晚上我们组织一场小规模的宴会,也算是欢迎一下戈尔茨坦先生”
应该说,布莱德的能耐还是比较大的。
他能在不依靠试验的情况下,把涡轮入口处复杂的非均匀因素考虑个七七八八,并针对性地利用冲击冷却进行处理,绝对算是航发研究领域中的豪杰。
唯一美中不足的是,他的计算是在拿到t1平台之前完成的,因此研究对象一直都是单独的涡轮叶片。
当然这并不是布莱德的问题。
以90年代末的超算水平,依靠正常的计算方法,确实没办法对整个航空发动机的热端部分进行气热耦合建模。
但如果他听到过常浩南对于那篇“边角料”文章的评价,就会意识到,冲击冷却是有极限的。
在所有热区加入冷却槽缝这种头疼医头脚疼医脚的行为,到了段壁附近,效果会非常差。
因此,热量聚集在涡轮叶片的叶顶部分,并不是一件小事。
尤其是在一台真正的航空发动机里面。
由于燃烧室和涡轮结构都会被机匣所包围,所以整体的散热条件其实比实验台上面更差。
而燃烧室中航油燃烧所送出的高温气流,也终究不如电加热来的稳定
本章完请牢记收藏,网址 最新最快无防盗免费找书加书可加qq群952868558