手中的论文放下,徐川静静的看着首页上的标题,回味着整个过程。
对于他这类人来说,看到一篇新领域的好论文,完全不亚于普通人吃到一道从未享用过的山珍海味,足够回味一生。
而大正整数因子的多项式分解问题,毫无疑问符合这份标准。
事实上,大数的因数分解问题是数学中最基本、最古老,而至今仍受人们重视但未能完全解决的问题之一。
它在数论领域的重要性和难度都完全不弱于在偏微分方程领域的杨米尔斯方程存在性。
因为大整数可能是素数也可能是合数,所以解决这一问题的前提在于先对给出的大数进行判断,判定给定的数是否为素数即素性判定难题和将大合数分解为素因数的大数分解两方面。
在数学中,它与质性检测难题很相似,但质性检测已被完全证明多项式时间可解,而大数因子分解问题仍然悬而未决。
甚至,几百年来,大数因子分解问题既未被证明是多项式时间可解的问题,也未被证明是n完备问题。
不过在眼前的这份论文中,徐川看到了一份详细的答案,亦或者说,一条通向数论终极问题之一的道路。
仔细的回味了一下手中的论文,徐川睁开眼,从书桌的角落中拖过来电脑,点开了威信聊天框。
“论文我已经看过一遍了,非常的优秀”
手指轻盈的敲击着键盘,一句夸奖隔着电脑屏幕传递到了上千公里之外。
这并非违心,而是他发自肺腑的感慨。
虽然很早之前就知她在数学和计算机上的天赋都很强,但他却也从未想过有一天她能进入这一个领域。
在学术界,亦或者说在网上,人们在讨论一门学科的时候,如果它某些方面具有较高的研究价值和实用性,本身足够难学的同时,在就业市场上存在一定的难度,就会被人称为“天坑专业”。
而这些专业通常被认为是基础学科,学习难度大,就业前景和薪酬待遇往往不如其他专业。
比如最常见的生化环材四大天坑。
不过很多时候,位于自然科学中最基础的数学专业却基本不会被人记入,亦或者很少有人说它是天坑专业。
并不是它不够难,而是它太难。
如果说其他的专业是一个天坑,你可以看得到坑底有很多人学者在艰难的往上爬。
那数学专业就是一座悬崖,下面深不见底,云雾缭绕,扔个东西都没有回音那种。你看不到它到底有多深,也看不清楚里面有多少人,只能看到寥寥可数的大牛在贴近悬崖顶部的云雾之上飞来飞去
用数学界的话来说,这些飞在云雾之上的大牛,都是数学界的神仙。
徐川自己就是飞的最高的那个。
而如今,在解决了大正整数因子分解具备多项式算法难题后,刘嘉欣也一跃从数学的深渊飞上了云雾之巅。
尽管这并不是完整的解决了n这道千禧年难题,只是其中的一份阶段性成果,但它的难度,以及对全世界的影响力,却是极大。
因为,它除了是数学和计算理论中的一个重要问题之外,任何一种证明都将对数学、密码学、算法研究、人工智能、博弈论、多媒体处理、乃至哲学、经济学等等许多其他领域产生深远的影响。
换个可以说涉及到所有人的领域“密码”
在如今,无论是手机,或电脑,亦或者邮件等等需要进行信息交流,或者涉及到账号安全的东西,都涉及到密码的存在。
而在计算机密码学中,目前来看,最重要的公开密钥算法是rsa。
它是计算机通信安全的基石,确保加密数据无法被解。rsa加密是非对称加密,可以在不直接传递密钥的情况下,完成解密。
简单的来说,它是由一对密钥来进行加解密的过程,分别称为公钥和私钥。
假设甲方和乙方相互通信。乙方生成公钥和私钥。甲方获取公钥并对信息进行加密公钥是公开的,任何人都可以获取。甲方使用公钥对信息进行加密。
只有私钥才能被破解,所以只要私钥不泄露,信息的安全性就可以得到保证。
所以它广泛应用在各领域,其安全性决定于对大整数分解的难度。
当合数所有的因子都很大时,采用强力方式得到具体的因子是很困难的,而这也正是 rsa体制理论的核心。
但在解决了大正整数因子分解具备多项式算法难题后,rsa加密系统的算法可以在找到方法后,快速的坍塌成一个解。
这意味着什么,自然不言而喻。
当然,这只是理论上的,实际上要做到视rsa等加密算法如无物,即便是有了这篇论文,目前也不可能做到。
或许等未来量子计算机成熟后,再配合这份论文,那大概就是真正的横行于传统计算机领域了。
至于现在,只能说还需要等待时间的发酵。
不过可想而知,