第472章 德利涅:我该怎样才能听懂这些(1 / 2)

听到好友的询问,威腾这才深呼吸了口缓缓的冷静了下来。

看着报告台上那银白色的幕布,他开口道“你是纯粹的数学家,可能很难理解非平衡状态强关联电子体系的数学基础理论对凝聚态物理的影响力。”

“如果要我评价,强关联电子体系中的难题,在凝聚态物理中的地位,犹如数论中的黎曼猜想。”

“在两个不同的体系中,各自解决它们的难度或许很难比较。但影响力,却丝毫不弱。”

“而非平衡状态强关联电子体系,是强电关电子体系难题中最为经典的一个。它研究非平衡态下强关联体系的动力学行为,以揭示新的物理现象和应用潜力。”

“但岂止至今,物理界和数学界没有人能够给出一种完善的数学基础,甚至,连一个完善的数学工具都没有。”

威腾简单的解释了一下,目光却从未挪开,一直紧紧的盯着报告台,内心的不平静浮现于脸庞之上,让德利涅有些讶异。

和这位好友一起在普林斯顿高等研究院共事这么多年,他很少看到威腾有这样失态的时候,尤其是这些年随着年龄的增长后。

不过在听完解释后,他倒是有些明白了。

如果一个难题的影响力能和数学界的黎曼猜想相比,那么这个难题的必然会在对应领域中有着极高的知名度与影响力。

就如同黎曼猜想,近些年来随着数学的发展,依托在这个猜想成立的基础上的数学公式,足足有数千条。

如果黎曼猜想被证明成立,那么这数千条公式将与之一起荣升成定理。

如果被证否,那数论领域将随之而来掀起一场有史以来最大的地震的。

强关联领域对于凝聚态物理的影响如果能达到这种地步的话,也难怪威腾会如此惊讶了。

哪怕仅仅是一部分的成果,也能影响这个凝聚态物理的发展。

事实上,德利涅想的还是太简单了。

相对比威腾来说,他就真的是一名纯粹的数学家了,主要从事代数几何和数论方面的研究工作,一辈子都没有脱离过数学。

对于物理方面的了解,他是真的不多,尽管知道凝聚态物理,也知道强关联电子体系,但对于这两者在凝聚态物理中的具体影响力有多大,就不清楚了。

甚至就连爱德华威腾,对于强关联电子体系的影响力到底有多大,说的都不是那么完全。

毕竟他的主要研究范围并不包括凝聚体物理,有了解也只是因为数学物理以及量子理论等方面的东西而已。

事实上,强关联电子体系在凝聚态物理领域,甚至整个物理领域的影响力,都是最为庞大的一个分支之一。

电子的关联会导致高温、非常规超导电性、反常的磁性、金属绝缘体相变、半金属、巨热电、多铁性、重费米子等大量丰富的量子效应和现象。

而探索这些效应和现象产生的微观机理,建立多体量子理论体系,是凝聚态物理、量子物理、化学物理等方向最活跃和最具挑战性的前沿研究领域之一。

或许用黎曼猜想来形容的强关联电子体系并不是一个很恰当的解释。

如果真要用数学来寻找一个近似的问题,那么ns方程应该是最类似的。

ns方程的推进和解决,将使得人类对于流体的理解提升一个极大的档次,从而使得一切与流体相关的理论与科技迎来巨大的发展。

从模拟云层流动、海洋流动、到飞机起飞后的湍流,火箭发送后的阻流、再到流经心脏的血液流动等各个领域。

都将得到极大的提升。

而对于强关联电子体系来说,这整套系统性难题的解决,将使得人类对于凝聚态物理与微观粒子的认识,得到质的飞跃。

而这一领域,影响的,是材料的发展。

如近些年最为火热的铜基铁基超导、fesesto界面超导、铱氧化物、莫特绝缘体、量子反铁磁及其他低维量子等等新材料,全都是在强关联电子体系下诞生的。

而这些材料的出现,每一项都使得人类的科技往前跨进了一大步,其意义自然不言而喻。

报告台上,徐川拉开了t,往后翻开了新的一页。

“对于我们而言,数学是研究数量、结构、变化以及空间模型等概念的一门学科。”

“透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。我们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。”

“而这些真理运用于其他领域,为人类带来科技与进度。”

atdiv csstentadva “我今天要讲的,就是利用数学工具来为凝聚态物理中的强关联电子体系带来一套数学理论与计算方法,它能极大的促进凝聚态物理和粒子物理的发展。”

“当然,反过来,随着物理的发展,也势必会带动数学的进步。”

“就