则 aj x是 h2j xk k, q`j中由 x的余维数为 j的定义在 k上的闭子代数簇的上同调类生成的 q向量空间”
“当 2时, ai xn kern2i1上的二次型x1ir2ixx是正定的。“
“由此,可得,在非奇异复射影代数簇上,任一霍奇类均是代数闭链类的有理线性组合。”
“即,霍奇猜想成立”
手中圆珠笔在洁白的稿纸上点下最后一个圆点,徐川长舒了一口气,将手中的圆珠笔丢到了一旁,身子往后一躺,靠在了椅背上盯着天花板愣愣的发呆。
当最后一个字符在稿纸上落下的时候,他心里涌出的并不是兴奋,不是高兴,也不是满足感和成就感。
而是带着一些不可置信的迷茫。
耗去长达四个多月的时间,从米尔扎哈尼教授遗留给他的手稿开始,到微分代数簇的不可缩分解问题的解决,再到代数簇与群映射工具的完善,到最后的霍奇猜想的解决。
在这条路上,他经历了太多。
盯着天花板良久,徐川终于回过神来,目光落在了身前书桌上的稿纸上。
将所有的稿纸完整的过了一遍,确定这真的是自己的做出来的成果后,他脸上终于露出了璀璨的笑容,明朗如窗外透进来的阳光。
如果没有意外的话,他,成功了。
成功解决掉了霍奇猜想这个世纪难题。
这是自1924年数学家来夫谢茨对于1,1类的霍奇猜想证明后,和霍奇猜想相关的问题最重要的突破。
尽管他现在还不知道它是否能经得起其他数学家和时间的考验。
但无论如何,他在数学上再次踏出了一大步。
完成证明霍奇猜想的论文之后,徐川又花费了一些时间,将稿纸上的这些东西再度过了一遍,并完善了一些其他的细节。
处理完成这些后,他开始动手将其整理到笔记本中。
而后准备公开。
对于任何一个数学猜想的证明来说,证明者是没有资格给予它是否正确的评价的。
唯有全面公开,且经历同行评审与时间的考验,才能确定它是否真的已经成功。
花费了整整一周的时间,徐川总算是将手中近百页的稿纸全部输入了电脑中。
这上百页的证明,其中有超过三分之一以上的篇幅,是针对解决霍奇猜想的代数簇与群映射工具的解释与论证,还有三分之一的篇幅,是针对霍奇猜想与代数簇与群映射工具搭建的理论框架。
剩下的,才是霍奇猜想的证明过程。
对于这篇论文而言,工具与框架,才是它的核心基础。
如果他愿意,完全可以将工具和理论框架单独拆分出来作为独立的论文进行发表。
就如同彼得舒尔茨的进类完美空间理论一样。
这些东西,如果最终被数学界接受,足够他拿到一次菲尔兹奖的。
这并非是菲尔兹奖的廉价,而是数学工具对于数学的重要性。
一项出色的数学工具,能解决的可不仅仅是一个问题。
就像一把斧头一样,它不仅仅能用以砍伐树木,也可以用做木工的工具,加工物品,还可以用作武器,进行厮杀。
同理,他构设的代数簇与群映射工具,也不仅限于与霍奇猜想。
不少代数簇与微分形式以及多项式方程,甚至是代数拓扑方向的难题,它都可以用来进行尝试。
比如和霍奇猜想同属于一类猜想家族的布洛赫猜想、代数曲面的霍奇理论应该确定零循环的cho群是否是有限维的问题、还有有限系数的某些动机上同调群同构映射到 etae上同调问题猜等等。
这些猜想和问题相互支持,数学家不断地在其中一个或另一个上取得进展,试图证明它们导致了数论、代数和代数几何方面的巨大进步。
代数簇与群映射工具能解决霍奇猜想,那么它在同类型的猜想上不说能完全适应,但至少也能起到一部分作用。
因为霍奇猜想本就是研究代数拓扑和多项式方程所表述的几何的关联的猜想。
它所研究的东西,并非是最先进的数学知识,而是在代数几何、分析和拓扑学这三个学科之间建立起一种基本的联系。
解决这个问题,需要的证明者对这三大领域的数学都有着极深的了解。
对于绝大部分的数学家来说,能在代数几何、分析、拓扑学这三大领域中的某一个领域有着深入研究就相当不易了,更别提三大领域都精通了。
而对于徐川而言,分析和拓扑学本就是他上辈子精通的数学领域,唯有代数几何并不在研究范畴内。
但这辈子跟随着德利涅深入学习数学,有这样的一位导师,他在代数几何上的进步超乎想象。
将霍奇猜想的证明论文全部整理完成并输入电脑后,徐川将其转成了d格式,然后通过邮箱发给了德利涅和威腾两位导师。