bnπ2n。”
“其中b2n是一个有理数的数列,即bernoui数。显而易见2是π2乘上一个特别的有理数,4是π4乘上一特别的有理数因此我们完全清楚了2,4都是有理数。而因为π是超越数,这些函数值当然也是超越数。”
听完了韩梦琪的表述,陆舟赞许地点了点头。
“不错。”
“但也别急着骄傲,这个问题只是考验你这篇论文是不是你自己完成的。接下来的问题,才是真正地挑战。”
看着严阵以待的韩梦琪,陆舟放下了手中的咖啡杯,继续问道。
“既然你已经证明了2n是超越数,那么我想问的是,3呢”
这么简单的问题
韩梦琪得意地翘起了下巴。
然而就在她正准备回答这个问题的时候,却是愣住了。
3
3
咦咦咦
这玩意儿到底是什么
看着一脸懵逼的韩梦琪,陆舟笑了笑问道。
“回答不上来了3看起来总比2n简单一些吧后者括号里还带着个未知数呢。”
“唔”腮帮子鼓了起来,咬着下嘴唇的韩梦琪苦思冥想着,却是一句话也说不出来。
过了好一会儿,才用试探的口吻问道。
“也是超越数”
陆舟笑着问道“哦为什么”
韩梦琪老实回答“猜的。”
看着小姑娘老实地低着头的样子,陆舟笑了笑,停顿了片刻继续说道。
“你不知道并不奇怪,因为写出欧拉公式的欧拉也不知道。一直到1978年法国数学家y才证明出3不是有理数,而关于5是不是有理数,我们现在都还不知道。”
一听陆舟问自己的问题根本没有答案,韩梦琪顿时气鼓鼓地说道。
“什么嘛拿这种没有答案的问题来来欺负我。”
“有答案的哦,”看着韩梦琪,陆舟笑了笑之后,换上了认真的语气说道,“任何数学问题都是有答案的,只是我们还不知道而已。而当你从硕士成为博士之后,所面对的挑战也正在这里,你得学会自己去寻找一条通往迷宫出口的道路,提出idea,然后将它实现。”
听到陆舟这句话之后,韩梦琪先是微微愣了一下。
随即她猛地反应了过来,脸上浮现了惊喜的表情。
“等,等一下,你的意思是,决定收我为徒了”
陆舟笑着点了下头。
“在你成功回答了第一个问题之后,其实我就已经决定了。”
“至于第二个问题,是你的研究课题。”
说着,陆舟从办公桌的后面站起身来,走到了办公室的黑板前,拾起一只用了半截的粉笔,在黑板上一边写着,一边说着。
“关于黎曼zeta函数在奇正整数点处值的超越性,一直是解析数论学界的经典问题。根据欧拉公式以及伯努利数的性质可以很容易证得2n是超越数,因此人们猜想,对任意整数n1,2n1也为超越数。”
“目前最好的成果是,有无数多个2n1为无理数,然而在数学上无穷和无穷之间的差别,也隔着无穷大那么远。”
“如果你能够在这个方向上向前一步,哪怕只是一小步,只要它是足以被学术界认可的成果。”
“到了那时候,你就能从我这里毕业了。”